
CSE 451: Operating Systems
Spring 2020

Module 0
(Instruction Level) Parallelism (cont.)

Today: Overview
• Control hazards

• Speculation
• False dependences

• Renaming
• Superscalars

• More general parallelism

(5-stage) Pipelining: Data Hazard

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

lw x4, 8(x2)
add x3, x3, x4
sw x3, 0(x2)

lw x3, 0(x2)add x3, x3, x4sw x3, 0(x2)

(5-stage) Pipelining: Data Hazard

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

lw x4, 8(x2)
add x3, x3, x4
sw x3, 0(x2)

lw x3, 0(x2)add x3, x3, x4

RAW

(5-stage) Pipelining: Control Hazards

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

beq x3, x4, skip
add x3, x4, x5

skip:
add x7, x3, x6

beq x3, x4, skip

(5-stage) Pipelining: Control Hazards

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

beq x3, x4, skip
add x3, x4, x5

skip:
add x7, x3, x6

beq x3, x4, skipadd x3, x4, x5

Is that the right next instruction?

Dealing with Control Hazards

• We can recognize that we have a branch in the cycle during which it is
fetched, but...

• We won’t know whether it’s taken or not until the third cycle of its
execution, and...

• We won’t have computed the target address until at least the second
cycle of its execution

• What instruction should be fetched immediate after we have fetched
the branch?

• We don’t know!

Option 0: Pessimistic / Bubbles

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

beq x3, x4, skip
add x3, x4, x5

skip:
add x7, x3, x6

beq x3, x4, skipNOPNOP

Con: Executing a branch always costs 3 instruction issue slots

Option 0+: Expose “branch delay slots” in ISA

• This is a variant of the general scheme “make it the next layer up’s
problem” (also used in operating systems)

• Compiler understands that the next two instructions after a branch are
always executed

• tries to find instructions that “naturally” would come before branch and move the
move them to after branch

• <some instruction>
beq ...

becomes
beq ...
<some instruction>

• When is it legal for the compiler to do that?
• If the compiler can’t find any instructions to fill the slots, it puts NOPs there

Option 1: Speculate #1: Assume Not Taken

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

beq x3, x4, skip
add x3, x4, x5

skip:
add x7, x3, x6

beq x3, x4, skipadd x3, x4, x5add x7, x3, x6

If we find out the branch is taken, we have to purge the two mis-fetched instructions

Speculate #2: Assume Taken

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

beq x3, x4, skip
add x3, x4, x5

skip:
add x7, x3, x6

beq x3, x4, skipNOPNOP

Don’t know the target address soon enough. This is bad...

Speculate #3: Branch Table Prediction

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

beq x3, x4, skip
add x3, x4, x5

skip:
add x7, x3, x6

beq x3, x4, skip

Branch
Table

Branch Table Maintenance

PC Next Inst
Address

0x3EF0804 0x3EF0808

0x28808 0x421FC0

... ...

... ...

• Table is indexed by value of the PC
• When you fetch a branch, find a row for that branch

• Enter its PC as the tag, if row doesn’t currently exist
• When you figure out what the actual next instruction

is, fill in the next address column of that row
• As you fetch instructions, use the PC’s value to look for a

matching row in the table
• If you find one, set the PC to the next inst address field

• That is, predict that the next time the branch is executed it
will do the same thing it did the last time

• “The future looks like the past”

Branches Due to Loops

• for (i=0; i<N; i++) { ...}
• There’s a conditional branch at the bottom of the loop testing if i<N
• The loop is taken each time it’s reached, except when i == N
• That last iteration causes the branch table to predict not taken on the first

iteration the next time the loop is reached
• So, you get two mis-predictions each time the loop is executed
• Can you do better?

• Sure. When you figure out the target address for a branch, predict taken if the
branch is to lower memory addresses and not-taken if it’s to higher addresses

• The loop branch will always predict taken, which means there’s only one mis-prediction per
loop execution

Can We Do Even Better?
• Maybe
• Branches show up for conditionals as well as loops

• If...then...else, for instance

• Use a scheme that remembers the past, but is willing to change its mind
• Add two bits per prediction table row to keep track of state

Predict
Taken

Predict
Taken

Predict
Not Taken

Predict
Not Taken

Not taken Not taken Not taken

Taken Taken Taken

Control Hazards Summary
• When you’re trying to go fast, you can’t afford to wait

• Long latency operations:
• Decide whether or not a branch will be taken
• Retrieve the contents of a web page

Control Hazards Summary

Moving Beyond Pipelines: Superscalars

• Pipelines have some important limitations
• Only one instruction can be issued per cycle

• Because of hazards, number of instructions completed per cycle will be less than one
• A dependence that stalls one instruction necessarily stalls all instructions

after it, even if they have no dependences themselves
• This could be addressed to some extent by the compiler, assuming it understood the

implementation of the datapath
• Even if I add more hardware (e.g., more ALUs), I can’t use them

Superscalars

• Some of the following slides are from
https://ece752.ece.wisc.edu/lect05-superscalar-org.pdf

https://ece752.ece.wisc.edu/lect05-superscalar-org.pdf

Constructing the Dependence Graph

• The dependences are RAW, WAR, and WAW
• RAW is a “true dependence”
• WAR and WAW are “false dependences”

• They’re false because they’re conflicts on names, not on values
• WAW:

• add x3, x2, x1 add x3, x2, x1
... vs
add x3, x4, x5 add x50, x4, x5

• The compiler produces conflicts on names because the ISA has only so
many registers (e.g., 16 or 32)

• The hardware implementation can have many more registers
• The hardware does “register renaming” as it fetches instructions to break false

dependences

Register Renaming

• Instead of thinking of this code as naming registers, think of it as
naming values

add x3, x2, x1 add <value3>, x2, x1
... vs.

add x3, x4, x5 add <value6>, x2, x1

• These “value names” identify the true depences (RAW)
• The hardware is free to map the value names to whatever physical

registers it wants

Register Renaming

• When you assign a name (one of the hardware registers) to a value, you
have to propagate it to future instructions

• Hardware keeps a table telling it which value name (hardware register)
currently represents each architectural register name

• add x3, x2, x1 add 51, <x2>, <x1>
... becomes ...
add x2, x3, x4 add 43, 51, <x4>
add x3, x7, x2 add 48, <x7>, 43

Hardware maintains a table with a row that says “x3 is 51” from the time it
sees the first instruction until the time is sees the name “x3” refer to a
different value

Register Renaming Summary

• WAW and WAR dependences can be eliminated by renaming
• That’s true for the CPU executing instructions that modify registers
• That’s true for software (including the OS) that updates variables/data

structures
• If multiple threads share adata structure, the code likely needs to explicitly

synchronize their execution
• Synchronization is an overhead, analogous to bubbles in the pipeline

• We “rename” by taking a centralized shared data structure and
replacing it with many more similar data structures

• Often, a “private” data structure per thread and synchronization code that
manages the private instances and makes them act as a single instance

	CSE 451: Operating Systems�Spring 2020�
	Today: Overview
	(5-stage) Pipelining: Data Hazard
	(5-stage) Pipelining: Data Hazard
	(5-stage) Pipelining: Control Hazards
	(5-stage) Pipelining: Control Hazards
	Dealing with Control Hazards
	Option 0: Pessimistic / Bubbles
	Option 0+: Expose “branch delay slots” in ISA
	Option 1: Speculate #1: Assume Not Taken
	Speculate #2: Assume Taken
	Speculate #3: Branch Table Prediction
	Branch Table Maintenance
	Branches Due to Loops
	Can We Do Even Better?
	Control Hazards Summary
	Control Hazards Summary
	Moving Beyond Pipelines: Superscalars
	Superscalars
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Constructing the Dependence Graph	
	Register Renaming
	Register Renaming
	Register Renaming Summary

